HFIP Milestones/Deliverables

Note: "Better Understanding of", "Begin to..", "Improve ..", not good choices for wording

HFIP Workshop November 9-10, 2009

- Over intensification esp. sheared systems
 - Perform inter-model (HWRF, GFDL, HWRFx, CoAMPS, GFS) comparison of environmental shear evolution, vortex response, for 2009 storms, also stream 2 (2)
- Minimum resolution to resolve convection
 - Increase resolution or fix parameterization?
 - Oper. Goal for 3 to 4 km real time run by 2012
 - < 1 km by 201x
- Development of advanced physics for high resolution
 - Microphysics, surface fluxes, PBL, wave/ocean, radiation, convective parameterization, gravity wave drag
 - Determine impact of gravity wave drag with further diagnostic studies of HWRF re-runs (1)

- Data assimilation, especially for regional models
 - For global models, determine impact of including eye dropsonde input (1)
 - Comparison of techniques
 - EnKF, 4Dvar, hybrid, digital filtering, nudging
 - When will inner core assim, be available in real time?
 - More emphasis on satellite data
 - What data is needed for very high resolution model?
 - Special challenges for coupled systems
- Vortex initialization
 - Develop generalized vortex initialization that also works for weaker/sheared storms (fy10 work for possible fy11 oper implementation, Emphasis on 9 km model (1)
 - Use GFS EnKF as baseline (1)
 - Determine what additional information from the existing NHC model input (CARQ) data can be used for vortex initialization (1)
 - Develop confidence indicators for CARQ data (1)
- Role for OSSEs?
 - Optimal mix, targeting strategies

- Detailed analysis/diagnostics of model runs
 - Kinematics and thermodynamics
 - Vortex 3-D structure
 - Large scale
 - Systematic biases
 - · Circulation features; sub-tropical high, TUTT, trades, etc
 - Evaluation against observations
 - · In situ and remote sensing
 - Hold workshop to create multi-scale diagnostic framework for addressing model biases and errors (1)
 - Create tools for generating synthetic passive/active microwave and IR imagery from model output (2)
 - Compare available observations (e.g., aircraft flight level winds) to model forecasts for 2009 forecast cases (1)
- Ensemble forecasts
 - Methods for generating perturbations
 - Initial condition, physics
 - Global versus regional
 - Configuration
 - · Resolution versus ensemble size, ocean coupling
 - Information content and NHC forecast applications

- Ocean model
 - What complexity is needed?
 - Resolution, assimilation, physics
 - Perform comparisons of coupled model forecasts with varied ocean models, including no coupling (also stream 2) (1 to 2)
 - "Ground truth" ocean model/assimilation performance using in situ and remote sensing data (2 or 3)
 - Evaluate impact of ocean model input on statistical intensity models (1 or 2)
 - Trade-offs with atmospheric component
- Land surface model
- Ocean, wave, storm surge
- Coordination of HWRF and CoAMPS efforts
- Administrative issues
 - Provide community support for HWRF

- NCEP EMC and NCO constraints
 - Current computing at NCO through FY13
 - Competition for resources
 - Space Wx, Nexgen, tsunami, etc
 - GFS changes have downstream influences
 - ~1.5 year cycle for implementations
 - Increase bandwidth through HFIP interaction
 - How can stream 2 influence stream 1?

- What observations are needed?
- Determine what observations are needed, what form and tools, priorities (current and future)
- Establish service to provide access to and distribute data and model output (1)
- Separate coordination for storm surge
- (See also obs team input)
 - Assimilation
 - Verification
 - Use mobile platform/instrument data to evaluate model forecasts at or near the coast (e.g., DHC)
 - Develop techniques for verification using non-traditional, non-uniform data
 - Model evaluation (including parameterizations)

- Data assimilation, Initialization
 - Global and regional
 - Inner core issues
 - Develop methods for assimilation of inner core observations (5)
 - Nonlinear/non-Gaussian errors
 - Representativeness
 - Create error covariance matrices suitable for inner core ?? (3)
 - Inclusion of model uncertainty
 - Assimilation resolution versus model resolution
 - Full utilization of satellite data
 - Develop plan for utilization of GOES-R and NPOESS
 - Develop more accurate height assignment for satellite feature track winds
 - Revise aircraft (e.g. G-IV) data collection strategies to account for new sensors and results from OSSEs, data denial experiments (3)

Physics

- Advanced parameterizations, better diagnostics
- Obtain sfc fluxes, wave properties, sea spray and near surface and boundary layer wind speed,
 T, q for testing and evaluation (4)
 - · Leverage field programs
- Obtain new data for microphysical/aerosol parameterizations

Ensembles

- Hold workshop on TC ensemble applications
- Run and evaluate 15 km global ensemble to address trade-off issues
- Design including initial condition and model errors
 - Determine best methods for perturbations for ensembles and diagnose perturbations from existing methods (storm and environment)
- products, downscaling, decision support
- Verification
 - Define set of metrics for verification besides ensemble mean
- Bias corrections
- Inter-model comparisons
- Regional models running off different global models
- Embed statistical intensity models in global model ensembles

Model numerics

- Reduce numerical noise from model (1)
- Develop and test numerical methods that are compatible with physical parameterizations at high resolutions needed for TCs
- Optimize scalability

- Resolution requirements (horiz, vertical) trade-offs
 - Perform comparison of HWRFx at three horizon, resolutions (1)
 - Test impact of vertical resolution (also stream 1) (2)
- Predictability limits for track, intensity, structure
 - Evaluate predictability of statistical TC intensity prediction
 - Develop methods for using model ensembles, adjoints for estimating predictability
 - Determine if "chaos" or other physically based methods can be used to estimate TC intensity predictability
- Ocean model complexity
 - Develop and test coupled ocean/atmos global model forecasts (3)
 - Develop and test coupled ocean/atmos/wave/surge regional models (4)
- Genesis and ET (extra-tropical) issues
 - Perform validation and diagnostics of TC genesis/ET in global and regional models (1)
- Diagnostics
 - Assess model response to shear through idealized model studies, comparison with data, especially inner core (3)
- What observations are needed?
 - Use of special field programs (GRIP, PREDICT, etc) for validation, diagnostics
 - Assimilation
- FY10 demo configuration
 - Database including ensembles